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ON THE COLE - HOPF SUBSTITUTION

V.K.Fedyanin

By making use of an arbitrariness in the known Cole-Hopf nonlinear replacement for the
Burgers equation, ¢, + ¢ - ¢, = v, the replacement is generalized in such a way that it makes

possible to solve any boundary problems exactly both for x20 and for 0 stl Concrete
formulae are obtained with a wide choice of ¢(0,r), ¢.(0,); ¢(0,1).

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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Hcrnonb3osas npous3B0N B M3BECTHOM HeEJIMHeHHOM mpeoGpasosauun Koyna — Xonda s
ypasHennst Bioprepca, ¢,+¢-¢,=vd , ynanocs oB6o6umrTe npeobpasoBaHHe Tak, 4TO
TIOABWIACE BO3MOXHOCTE TOMHO peHIaTh jioObie KpaeBble 3amauy¥ Kak s x 20, Tak M mid
0 <x <! INonyuens: xoHKpeTHbIe hopMy:sl npu mipoxom sutbope ¢(0,1), ¢,(0,0); 6(0,0).
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1. We will proceed from the transport equation in its general form:

9p(x.0) + 9g(x,t) =0

or ™ M

where p(x,?) is the density per unit length; g(x,t) is the expense of a substance (that depends
on a problem under consideration) per unit time; both p(x,f) and g(x,f) are assumed to be
differentiable functions, though eq.(1) can be generalized to discontinuous functions, as
well [1].

Further study of eq. (1) is essentially based on the assumption for g(x,f) being a density
functional:

q=Q(p) 2
that results in the known, generally, nonlinear equation
9,p+CpIP, =0, ClP)=Q, 3)

That admits general investigation of the behavior of solutions on (x,f)-plane and provides a
complete picture of the diagrams of characteristics for nonlinear waves. It can be shown
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It is natural to take g(x,f) in the form

qxH=0(p)-Re'p -5_~ ... 4)

-
where added terms of the diffusion-dispersion type will smear out the front of vertical
characteristics where the overturning starts and will lead to the equation

3,p+C(P)p,=Re'p_+3p_, (Re,8)>0. )

(In principle, higher-order derivatives can be taken, however, for our purposes, the
expansion (4) suffices.) The coefficient of P Re™!= /9L, is the inverse Reynolds number

and the term with it describes the process of dissipation caused by diffusion (v is the
kinematic viscosity; ¥ is the characteristic velocity and L is the characteristic size). The
term 8p  describes dispersion. So, it remains to solve the problem with Q(p). it can be

taken, for example, in the most general form

ko

=3 o ©)
0

However, since even the case n =2 leads to rather a complicated and, generally, unsolvable
problem, we take it in the form

" k
op=Y a5 9
0
which gives, for eq.(5),
d,p+(ep+b) px+Re’1pu+8pm. 8

The transformation p’ = p + b/ € reduces eq.(8) into the «standard» form [2] (the prime will
be omitted):

-1
d,p+epp, +Re Pt 0P ®

The nonlinear equation (9) describes both the dissipation and the dispersion. Note that until

now, no assumptions were made about the quantities &, Rel, & the amplitude of
nonlinearity, viscosity and the dispersion coefficient.

A detailed investigation of the behaviour of nonlinear waves of a small amplitude € that
allows us to start with solving the linear problem and to trace the behavior of nonlinear
waves on the interval t~ 1/¢€ has been carried out in ref. [2]. If in this case we neglect the

dissipation, Rel << 8, we arrive at the KdV equation having played a leading part in

formulating the inverse-problem method [4]. If the dispersion can be neglected, Rel>> 0,
we obtain the Burgers equation [5]

3,p+epp =Re’p,, (10)
that will be further of our detailed investigation.
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2. We can apply the scale transformation
t=at, x=bz; a= (Re_l)l/ze_l, b="\Re !

to eliminate the parameters € and Re™! from equation (10), as a result of which equation
(10) reduces to the equation

0P +PP, =P, (11)

where for convenience of comparing with earlier results [1] we omit the parameter ¢, i.c.,
the scale of the amplitude will be p’(x,t). Passing from ¢ to 1 by the formula at, we arrive
at the following form of the Burgers equation

Re™!

1
dp+pp,=Vvp, V= e =% 12)

For this equation, Cole [6] and Hopf [7] have independently proposed the nonlinear re-
placement of variables that reduces (12) to the linear equation of thermal conductivity,
namely,

p=-2v aa [In ¢(x,)]. (13)

It is convenient to make this substitution in two steps

-9
= 2o W), (14)
Note that
Yo =] pee) +p,) (15)
0

obeys equation (14), which was nowhere mentioned. Substitution of (14) into (12) gives

Vo + Y~V =0 (16)

or

1
(\yt+-2-\y)2c—vwxxj=0. (17)

X

The latter equation is integrated trivially and, as a result, we obtain
1
Yty V- vy, =), (18)

where f(7) is a function of 1. Note that in the standard consideration [1,2] it is assumed to
be zero. Below, we shall explain for which problems it is possible. Further, putting

, 1
=-2vli , = —_—— S
v ving, ¢ CXP( 2v ) (19
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and computing the derivatives in (18), we have
1
0, =V, ~5-fD)0. (20)

The nonlinear Burgers equation (12) is reduced to the linear equation of thermal
conductivity (diffusion) and there appears an extra term with the function f{t) given on the
characteristic of an equation of the parabolic type.If we consider this substitution as a
method of reduction of the nonlinear equation to the equation of thermal conductivity, then
in particular problems [1] at f{t)=0 we can solve only the initial problem, defining
p(x,0) = F(x) (a physical quantity is just p(x,r) entering into (12)) and using the source
function for (20), we can obtain a rather complicated expression for p(x,t), which is just
made in [1,2].

However, we think that the extra term with A7) in (20) will allow us to solve realistic
boundary value problem for (8) and (9). We can, of course, formulate the boundary value
problems for (20) at ft)=0 of the first kind ¢(0.)) =@,(1) and of the second kind

(px(O,t) = (pq(t), and to employ the tested methods [8,9,10]. Since the function y(x,t) in (14)
and the function @(x,r) in (19) are auxiliary functions, we should start with the conditions

on the real density obeying (11), i.e., formulate both the initial and boundary value
conditions, defining p(0,f) = Po(: P(x.0) = po(x), p(0.5)= p,(t) with various combinations of

boundary value conditions (8,9] and making there the Cole — Hopf substitution, solve (20)
with the functions thus defined rather than with an arbitrary function f{1).

This program will be realized below. When (12) and (20) are used in concrete
problems, we should take into account that we removed the constant in (8), passing from
the density p in (1) to p’=p+b/¢, events evolved in time T=gr, and the diffusion

coefficient in (12) was equal to v =Re 'e. The Reynolds coefficient Re and the amplitude
of nonlinearity are both nonzero, but they can, in principle, possess any values.

3. Now we shall take advantage of those possibilities that arise owing to the functional
arbitrariness (18) for solving eq.(12) in the region 1> 0,0 < x < oo . Using (15) we obtain

£ = im0 + 2 W2 - o)), |=po@+ 3 pfm-vo,0 @1
X )

where

P =px=0,7), p(V)=p(0,7) (22)

are known functions given as boundary conditions of the Burgers equation (12). In addition,
to find solutions of eq.(12) in the region (0<x<o, 120, one should define
Po®) =p(x, ©=0). The spatial coordinates and time coordinates in the integrals written

below will be denoted by (x, §, z) and (7, 1, A), respectively. Using the substitution
9 =X(VR(x, 1) (23)

it can be shown that the function R(x, T) obeys the equation
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R(x,7=VR (x,7) (24)
provided that

1

T
1 p 0)
x=eXP[—2—vJﬂu)du]=xer e
0

T
1 1
r=s- [ P+ | (5 Pa(W) — vm(u))du] (25)
0 .
and Xor pO(O) are taken from physical considerations. In view of .. relation (19) we obtain

Rx, ©) = R} exp ( r- % e ‘c)) =
T X
<K exp z—lv{ J (3 P00 -V, e -(I) p(x, D x}
0

1
R o=y e2 R ()

0=1q (26)

using (15) and (19). From expression (19) ‘it follows that

R,(x) =R(x,0)= RSI exp {i - % J‘ pE, 0)d &]
0
1] fr1
R,(x)=R(0,7)= R(;l exp E{ { [5 p(z,(u) - VPI(“)}N}

So, we completely define the first boundary value problem [3,9] for an auxiliary
equation of the diffusion type (24). It is not difficult to formulate the second and third
boundary value problems for eq.(24) (along with Rl(x), either R3(1:)EBXR(O, 1) or

axR(O, 1) =A[R(0, T) - 6(7)] is given), as well as the problem without initial conditions
((R,(x)=0)) and various combinations of boundary value problems. One can also solve

problems ‘in the interval 0 <x </ [3]. These problems require the definition of R(l, 1),
Rx(l, 1), or px(l, 1), (the latter will result in more complicated formulae but difficulties are

of pure computational nature).
The first term in (21) can be expreseed through P, (po)x, (Py),, by using eq.(12)

Po(1) == po(0p,(T) + vp, (0, 7) (27

but keeping in mind (23) with further represéntation (25) for (1) we have not made that.
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The first boundary value problem for (24) is solved by the conventional method [3,9].
Its solution is given by the formulae

R(x, ) =R (x, 1) + R (x, T); (28)

R(x, =] [G_(x. & V- G,(x & VIR (B +
0

T
+2v j aﬂ"’—gé‘—‘xl R (M)

R,E)=F; exp[ = po(é)diJ
A
R,M) =R, exp[ v f ( P ) - po(u)}lu}

h2
1 +
Gi(x,ﬁ,‘t):V—z exp[——zd], ‘hi=xi§’ d=2vt

9G(x,0,T—A) 2nx x*
=— exp|—-<|, d,=v(T-A).
%* (21:d1)3’2 "p[ le =VE-M)

The solution p(x, 7) for the Burgers equation can be derived on the basis of formulae
(14), (19), (23) and is given by the formula

R
P D=y, =-2v =, (29)

where

T[0G (x,E, 1) oG (581
=J[ ax - ax ]Rl(i)dg'*'

0

® G (x,0,T-Q)
-0
+2v f P

9.G e [ fé
6 =% -
G (x8T) D exp

R, (ML

2mx)’ ? .
9,¢G(x,0,1- ) = —[ 2m - %IL ] exp [- = }21&11) 2, (30)
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Naturally, the final formulae for p(x, T) obtained by (29) are rather complicated. How-
ever, defining the initial density distribution Po(x) = p(x, T=0) obeying the burgers equation
and the values of density and its first derivative po(‘c) =px=0,7), p,(V=p(x=0,1), we
obtain the evolution of p(x, T) law for 120 and 0 £ x < oo with the help of (29) and (30).
The functions po(x), pO(‘c), pl(‘c) should satisfy the conditions

Ipo(x)l<A, Ipo(t)l<B, Ipl(‘c)I<C

that ensure the obtained solution being unique.

Now, we can formulate the following problems:

1. the first boundary value problem for the Burgers equation defining
Py®) = p(x, T=0); p(x=0,1) = p,(1), p,(0,7) =0; |

2. the second boundary value problem for the same equation giving Po(x),
p (0, 7) = p,(t) and [3,9];

3. the third boundary value problem defining pl(t) = k[po(t) - 6(7)].

Formulae (29) and (30) give their solution.

Thus, for describing a specific process, it is necessary to replace p, v, by ,
p-—ble,v= ReV/e t=v¢ d=vi—> Re ! in R,(©), R,(A) and R(x, 7).

In conclusion, we stress once more that when (12) and (20) are used in concrete
problems, it is necessary to take into account that we omitted the constant from (8) passing
from the density p to p’=p+b/¢ in eq.(1), processes evolved with time T=gf, and the
diffusion coefficient was v=Re /¢ in €q.(12). The Reynolds number and the nonlinearity
coefficient are both different from zero but can assume any values.

I am grateful to B.M.Barbashov, V.A.Osipov, L[.V.Puzynin and V.P.Silin for
discussions of the results and constructive remarks. I sincerely thank D.V.Shirkov for a
careful reading of the preliminary version of this note as just his constructive criticism
promoted writing of the third section that seems to open possibilities of using the Burgers
equation for solving concrete problems.
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